Skip to main content

Efficient custom mapping from data model to ViewModel/Dto or vice versa with LINQ support

How many lines of codes we waste on mapping from one source to a destination like DataModel to ViewModel.  There are well-known Mappers available to do the same but nothing can come close in terms of performance by using manual mapping just that we need to write at too many places or takes a huge chunk of code lines in our main codes, may be under controllers, services or where ever you prefer projection in code.

The idea is to develop a proper way to deal with mappings. Some time back I had written code for manual mapping under LINQ queries. Manual model mapping - LINQ projection technique, this still works great. The idea is to create a cleaner solution as a whole new package for handling Mapping which can support general mappings between models and support of LINQ projection to select the limited number of rows as required.

Primary objectives of the implementation.
- A Data model to view model/DTO/or any other.
- view model/DTO/or any other to a data model.
- Support of LINQ projection without selecting all columns from a table.
- Support of IEnumerable.

The above items are compelling enough to create mapping structure with performance benefits.

Let's start with creations of interfaces to support One-way mapper, Two-way mapper, and support of LINQ queries in both case.

Basically, all we need is creation of interfaces and implementation of mapping classes based on models.

A simple IMapper implementation which simply converts from one model to other. It is simple enough not to have any kind of explanation.

 public interface IMapper<TSource, TResult>  
 {  
   /// <summary>  
   /// Maps the specified model.  
   /// </summary>  
   /// <param name="model">The model.</param>  
   /// <returns>Projection/Mapping from <paramref name="model"/> to a new type.</returns>  
   TResult Map(TSource model);  
 }  


IQueryMapper is for supporting LINQ projection, it is a kind of extension of above.

 public interface IQueryMapper<TSource, TResult>  
 {  
   /// <summary>  
   /// Gets the expression for projection/mapping.  
   /// </summary>  
   /// <value>  
   /// The expression for projection/mapping.  
   /// </value>  
   Expression<Func<TSource, TResult>> Expression { get; }  
 }  


ITwoWayMapper, It is opposite of  IMapper by inheriting the feature. Like if IMapper is for User to UserDto, this would allow having UserDto to User.

 /// <summary>  
 /// Two way mapping for models.  
 /// </summary>  
 /// <typeparam name="TFirst">The type of the first.</typeparam>  
 /// <typeparam name="TSecond">The type of the second.</typeparam>  
 /// <seealso cref="IMapper{TFirst, TSecond}" />  
 public interface ITwoWayMapper<TFirst, TSecond>  
     : IMapper<TFirst, TSecond>  
 {  
   /// <summary>  
   /// Maps the specified model.  
   /// </summary>  
   /// <param name="model">The model.</param>  
   /// <returns>Projection/Mapping from <paramref name="model"/> to a new type.</returns>  
   TFirst Map(TSecond model);  
 }  


IQueryTwoWayMapper, is similar to ITwoWayMapper but with LINQ support.

 public interface IQueryTwoWayMapper<TFirst, TSecond>  
   : IQueryMapper<TFirst, TSecond>  
 {  
   /// <summary>  
   /// Gets the reverse projection/mapping expression.  
   /// </summary>  
   /// <value>  
   /// The reverse projection/mapping expression.  
   /// </value>  
   Expression<Func<TSecond, TFirst>> ReverseExpression { get; }  
 }  


All these above implementations use Interface Segregation Principle principle, we would see advantages for them soon.

Based on above interfaces, we can create extension methods to map it to expressions or System.Func implementation based on need. I have not entirely tested extension methods based on above interfaces but it is really simple to extend based on a need to do something else. This is one of the major parts of Mapping Structure.

 /// <summary>  
 /// Extension methods for mapper  
 /// </summary>  
 public static class ExtensionMapper  
 {  
   /// <summary>  
   /// Maps the model from <typeparamref name="TSource"/> to <typeparamref name="TResult"/>.  
   /// </summary>  
   /// <typeparam name="TSource">The type of the source.</typeparam>  
   /// <typeparam name="TResult">The type of the result.</typeparam>  
   /// <param name="mapper">The mapper.</param>  
   /// <param name="source">The source.</param>  
   /// <returns>Projection from <typeparamref name="TSource"/> to <typeparamref name="TResult"/>.</returns>  
   public static IEnumerable<TResult> Map<TSource, TResult>(  
     this ITwoWayMapper<TSource, TResult> mapper,  
     IEnumerable<TSource> source)  
   {  
     return source.Select(val => mapper.Map(val));  
   }  
   /// <summary>  
   /// Maps the model from <typeparamref name="TSource"/> to <typeparamref name="TResult"/>.  
   /// </summary>  
   /// <typeparam name="TSource">The type of the source.</typeparam>  
   /// <typeparam name="TResult">The type of the result.</typeparam>  
   /// <param name="source">The source.</param>  
   /// <param name="mapper">The mapper.</param>  
   /// <returns>Projection from <typeparamref name="TSource"/> to <typeparamref name="TResult"/>.</returns>  
   public static IEnumerable<TResult> Map<TSource, TResult>(  
     this IQueryable<TSource> source,  
     IQueryTwoWayMapper<TSource, TResult> mapper)  
   {  
     return source.Select(mapper.Expression);  
   }  
   /// <summary>  
   /// Maps the model from <typeparamref name="TSource"/> to <typeparamref name="TResult"/>.  
   /// </summary>  
   /// <typeparam name="TSource">The type of the source.</typeparam>  
   /// <typeparam name="TResult">The type of the result.</typeparam>  
   /// <param name="mapper">The mapper.</param>  
   /// <param name="source">The source.</param>  
   /// <returns>Projection from <typeparamref name="TSource"/> to <typeparamref name="TResult"/>.</returns>  
   public static IEnumerable<TResult> Map<TSource, TResult>(  
     this ITwoWayMapper<TResult, TSource> mapper,  
     IEnumerable<TSource> source)  
   {  
     return source.Select(val => mapper.Map(val));  
   }  
   /// <summary>  
   /// Maps the model from <typeparamref name="TSource"/> to <typeparamref name="TResult"/>.  
   /// </summary>  
   /// <typeparam name="TSource">The type of the source.</typeparam>  
   /// <typeparam name="TResult">The type of the result.</typeparam>  
   /// <param name="source">The source.</param>  
   /// <param name="mapper">The mapper.</param>  
   /// <returns>Projection from <typeparamref name="TSource"/> to <typeparamref name="TResult"/>.</returns>  
   public static IEnumerable<TResult> Map<TSource, TResult>(  
     this IQueryable<TSource> source,  
     IQueryTwoWayMapper<TResult, TSource> mapper)  
   {  
     return source.Select(mapper.ReverseExpression);  
   }  
 }  


Implementation

Sample DTO

 public class Book  
 {  
   public string Name {get;set;}  
   public string Publisher {get;set;}  
 }  
 public class BookDto  
 {  
   public string BookName {get;set;}  
   public string BookPublisher {get;set;}  
 }  

A simple one-way mapper implementation of IMapper based on above models.

 public class BookMapper  
      : IMapper<BookDto, Book>  
 {  
      public Book Map(BookDto model)  
         => new Book  
         {  
           Name = model.BookName,  
           Publisher = model.BookPublisher  
         };  
 }  


Usage

 public ActionResult AddBook(BookDto model)  
 {  
      var bookMapper = new BookMapper();  
      var bookDataModel = bookMapper.Map(model);  
      // Code to insert book.  
 }  


Two-way with IQueryTwoWayMapper sample mapper implementation.

 public class BookMapper  
   : ITwoWayMapper<Book, BookDto>  
     , IQueryTwoWayMapper<Book, BookDto>  
 {  
   public Book Map(BookDto model)  
         => new Book  
         {  
           Name = model.BookName,  
           Publisher = model.BookPublisher  
         };  
   public BookDto Map(Book model)  
       => new BookDto  
       {  
         BookName = model.Name,  
         BookPublisher = model.Publisher  
       };  
   public Expression<Func<BookDto, Book>> ReverseExpression  
       => model  
       => new Book  
       {  
         Name = model.BookName,  
         Publisher = model.BookPublisher  
       };  
   public Expression<Func<Book, BookDto>> Expression  
       => model  
       => new BookDto  
       {  
         BookName = model.Name,  
         BookPublisher = model.Publisher  
       };  
 }  


With above codes, it is a bit confusing why similar type of codes are repeated for function and expression implementation. The thing is System.Func and general function cannot be truly converted to expression easily. If we directly try to pass Func than it would execute on CLR rather than SQL level which would result in the selection of all columns and then the projection. With Expressions, only required columns can be selected.

Also, Expression cannot be simply converted to Func since those can be really complex with multi-level of Expression Tree. If you still need a cleaner way and ready to compromise performance than this line can be used with expression compilation but I won't recommend going in that way.

 public BookDto Map(Book model) => Expression.Compile().Invoke(model);  


Implementation of above

The separation of interface allows us to use in any combination. Use, IMapper with IQueryMapper in a case of one-way mapping with LINQ queries. IMapper could be individually used like in the first example and in above we used all interface but just by inheriting two of them which depends upon their root inheritance.

 public ActionResult AddBook(BookDto model)  
 {  
      var bookMapper = new BookMapper();  
      var bookDataModel = bookMapper.Map(model);  
      // Projection from Context Book data to BookDto through Expression by using extension method.  
      var bookDtos = BookRepository.All().Select(bookMapper.Map());  
 }  


I have used the implementation as a concept but use as per your requirement, altering codes and further separation/removal of interface and extra implementation of Extension methods.

Popular posts from this blog

Handling JSON DateTime format on Asp.Net Core

This is a very simple trick to handle JSON date format on AspNet Core by global settings. This can be applicable for the older version as well.

In a newer version by default, .Net depends upon Newtonsoft to process any JSON data. Newtonsoft depends upon Newtonsoft.Json.Converters.IsoDateTimeConverter class for processing date which in turns adds timezone for JSON data format.

There is a global setting available for same that can be adjusted according to requirement. So, for example, we want to set default formatting to US format, we just need this code.


services.AddMvc() .AddJsonOptions(options => { options.SerializerSettings.DateTimeZoneHandling = "MM/dd/yyyy HH:mm:ss"; });



Elegantly dealing with TimeZones in MVC Core / WebApi

In any new application handling TimeZone/DateTime is mostly least priority and generally, if someone is concerned then it would be handled by using DateTime.UtcNow on codes while creating current dates and converting incoming Date to UTC to save on servers.
Basically, the process is followed by saving DateTime to UTC format in a database and keep converting data to native format based on user region or single region in the application's presentation layer.
The above is tedious work and have to be followed religiously. If any developer misses out the manual conversion, then that area of code/view would not work.
With newer frameworks, there are flexible ways to deal/intercept incoming or outgoing calls to simplify conversion of TimeZones.
These are steps/process to achieve it. 1. Central code for storing user's state about TimeZone. Also, central code for conversion logic based on TimeZones. 2. Dependency injection for the above class to be able to use globally. 3. Creating Mo…

LDAP with ASP.Net Identity Core in MVC with project.json

Lightweight Directory Access Protocol (LDAP), the name itself explain it. An application protocol used over an IP network to access the distributed directory information service.

The first and foremost thing is to add references for consuming LDAP. This has to be done by adding reference from Global Assembly Cache (GAC) into project.json

"frameworks": { "net461": { "frameworkAssemblies": { "System.DirectoryServices": "4.0.0.0", "System.DirectoryServices.AccountManagement": "4.0.0.0" } } },
These System.DirectoryServices and System.DirectoryServices.AccountManagement references are used to consume LDAP functionality.

It is always better to have an abstraction for irrelevant items in consuming part. For an example, the application does not need to know about PrincipalContext or any other dependent items from those two references to make it extensible. So, we can begin with some bas…

Architecture solution composting Repository Pattern, Unit Of Work, Dependency Injection, Factory Pattern and others

Project architecture is like garden, we plant the things in certain order and eventually they grow in similar manner. If things are planted well then they will all look(work) great and easier to manage. If they grow as cumbersome it would difficult to maintain and with time more problems would be happening in maintenance.

There is no any fixed or known approach to decide project architecture and specially with Agile Methodology. In Agile Methodology, we cannot predict how our end products will look like similarly we cannot say a certain architecture will fit well for entire development lifespan for project. So, the best thing is to modify the architecture as per our application growth. I understand that it sounds good but will be far more problematic with actual development. If it is left as it is then more problems will arise with time. Just think about moving plant vs a full grown tree.

Coming to technical side, In this article, I will be explaining about the various techniques tha…

Unit Of Work injection through Asp.Net Core Dependency Injection

This article is not directly related to UnitOfWork but leveraging Asp.Net Core Dependency Injection to consume Unit Of Work.

In one of the previous article about project architecture, I was not very satisfied with the approach for Unit Of Work implementation for initialization of repository even if with some advantage.

Here is old code for UnitOfWork.

public sealed partial class MyProjectUnitOfWork : UnitOfWork<DbContext>, IMyProjectUnitOfWork { public MyProjectUnitOfWork(IContextFactory<DbContext> contextFactory) : base(contextFactory) { } /// <summary> /// BookRepository holder /// </summary> private MyProject.DB.Repository.BookRepository _bookRepository; /// <summary> /// Gets the BookRepository repository. /// </summary> /// <value> /// The BookRepository repository. /// </value> MyProject.Interface.Repository.IBoo…

Kendo MVC Grid DataSourceRequest with AutoMapper

Kendo Grid does not work directly with AutoMapper but could be managed by simple trick using mapping through ToDataSourceResult. The solution works fine until different filters are applied.
The problems occurs because passed filters refer to view model properties where as database model properties are required after AutoMapper is implemented.
So, the plan is to intercept DataSourceRequest  and modify names based on database model. To do that we are going to create implementation of CustomModelBinderAttribute to catch calls and have our own implementation of DataSourceRequestAttribute from Kendo MVC. I will be using same source code from Kendo but will replace column names for different criteria for sort, filters, group etc.
Let's first look into how that will be implemented.
public ActionResult GetRoles([MyDataSourceRequest(GridId.RolesUserGrid)] DataSourceRequest request) { if (request == null) { throw new ArgumentNullException("reque…

OpenId Authentication with AspNet Identity Core

This is a very simple trick to make AspNet Identity work with OpenId Authentication. More of all both approach is completely separate to each other, there is no any connecting point.

I am using Microsoft.AspNetCore.Authentication.OpenIdConnect package to configure but it should work with any other.

Configuring under Startup.cs with IAppBuilder
app.UseCookieAuthentication(new CookieAuthenticationOptions { AuthenticationScheme = CookieAuthenticationDefaults.AuthenticationScheme, LoginPath = new PathString("/Account/Login"), CookieName = "MyProjectName", }) .UseIdentity() .UseOpenIdConnectAuthentication(new OpenIdConnectOptions { ClientId = "<AzureAdClientId>", Authority = String.Format("https://login.microsoftonline.com/{0}", "<AzureAdTenant>"), ResponseType = OpenIdConnectResponseType.IdToken, PostLogoutRedirectUri = "<my website url>", Au…

Configuring Ninject, Asp.Net Identity UserManager, DataProtectorTokenProvider with Owin

It can be bit tricky to configure both Ninject and Asp.Net Identity UserManager if some value is expected from DI to configure UserManager. We will look into configuring both and also use OwinContext to get UserManager.

As usual, all configuration need to be done on Startup.cs. It is just a convention but can be used with different name, the important thing is to decorate class with following attribute to make it Owin start-up:

[assembly: OwinStartup(typeof(MyProject.Web.Startup))]
Ninject configuration

Configuring Ninject kernel through method which would be used to register under Owin.

Startup.cs
public IKernel CreateKernel() { var kernel = new StandardKernel(); try { //kernel.Bind<IHttpModule>().To<HttpApplicationInitializationHttpModule>(); // TODO: Put any other injection which are required. return kernel; } catch { kernel.Dispose(); throw; }…

Global exception handling and custom logging in AspNet Core with MongoDB

In this, we would be looking into logging and global exception handling in the AspNet Core application with proper registration of logger and global exception handling.

Custom logging
The first step is to create a data model that we want to save into DB.

Error log Data model
These are few properties to do logging which could be extended or reduced based on need.

public class ErrorLog { /// <summary> /// Gets or sets the Error log identifier. /// </summary> /// <value> /// The Error log identifier. /// </value> [BsonRepresentation(BsonType.ObjectId)] public ObjectId Id { get; set; /// <summary> /// Gets or sets the date. /// </summary> /// <value> /// The date. /// </value> public DateTime Date { get; set; } /// <summary> /// Gets or sets the thread. /// </summary> /// <v…

T4, Generating interface automatically based on provided classes

With new techniques and patterns interface plays a key role in application architecture. Interface makes application extendable like defining file upload interface and implementing based on file system, Azure Blob storage, Amazon S3. At starting we might be implementing based on Azure Blob but later we might move to Windows based file system and so on.

Ideally we create interface based on need and start implementing actual default implementation class. Many a times at starting of implementation there is one to one mapping between Interface and Class. Like from above example File upload interface and the initial or default class implementation that we design and with time it will get extended.
In this article, we will try to create interface based on default class implementation. This is not at all recommended in Test Driven Design (TDD) where we test the application before actual code implementation but I feel sometimes and in some situations it is okay do that and test straight afte…